EXERCISE SHEET

- 1) Using one of the conjectures in Lecture 1, show that $H^i_{\mathcal{M}/\mathbb{Z}}(X, \mathbb{Q}(n))$ is supposed to agree with $H^i_{\mathcal{M}}(X, \mathbb{Q}(n))$ for n > i.
- 2) In the lecture I never defined homological equivalence. Here is the definition: Let X be a smooth projective variety over a field $k \subseteq \mathbb{C}$ (for simplicity, and this is all we need. Write $Z^n(X) := Z^n(X, 0)$ for the codimension n cycles on X. We say that two cycles $Z, Z' \in Z^n(X)$ are homologically equivalent, and write $Z \sim_{\text{hom}} Z'$, if $\text{cl}_{\text{B}}(Z) = \text{cl}_{\text{B}}(Z')$ where

$$\operatorname{cl}_{\mathrm{B}}: Z^{n}(X) \to H^{2n}_{\operatorname{sing}}(X_{\mathbb{C}}, \mathbb{Z}(n))$$

is the Betti cycle class map. For the sake of asking a question: Give an example of two cycles Z, Z' such that $Z \sim_{\text{hom}} Z'$ but $Z \not\sim_{\text{rat}} Z'$.

3) Let X be a smooth projective variety over \mathbb{Q} , and let $n \geq 0$. Recall that the Tate conjecture in this setting asserts first that

$$\operatorname{rank}_{\mathbb{Z}} N^n(X) = \dim_{\mathbb{Q}_\ell} H^{2n}_{\text{\'et}}(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell(n))^{\operatorname{Gal}(\mathbb{Q}/\mathbb{Q})}$$

where ℓ is any prime, and second that the right hand side is

 $\dim_{\mathbb{Q}_{\ell}} H^{2n}_{\text{\'et}}(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_{\ell}(n))^{\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})} = -\operatorname{ord}_{s=n+1} L(H^{2n}(X), s) \,.$

Show that Beilinson's conjectures together with the Tate conjecture predicts that

$$\dim_{\mathbb{Q}} H^{2n+1}_{\mathcal{M}/\mathbb{Z}}(X,\mathbb{Q}(n)) = \operatorname{ord}_{s=n} L(H^{2n}(X),s).$$

4) Let E be an elliptic curve over \mathbb{Q} . Show that $H^3_{\mathcal{M}/\mathbb{Z}}(E, \mathbb{Q}(2))$ is supposed to be trivial.